川烏

(ACONITI RADIX)

川烏 MI	2
	2
二、藥材性狀描述 (圖 1)	2
三、藥材組織顯微鑑別 (圖 2)	2
四、藥材粉末顯微鑑別 (圖 3)	2
川烏 HPLC	7
一、材料	7
二、儀器及層析管柱	7
三、實驗藥品及試劑來源	7
四、方法	7
五、結果	11
川烏 TLC	35
一、方法	35
二、萃法選擇及濃度測試	37
三、溶媒系統選擇	38
四、觀察方式選擇	40
五、十批川烏藥材樣品檢測	41

川鳥 MI

一、藥材採購及鑑定

收集 10 批來自全臺北、中、南、東各地不同通路之中藥販賣業或中藥製造業的藥材樣品,確認所收集之藥材為烏頭的乾燥主根。

二、藥材性狀描述 (圖1)

藥 材 名:川鳥

生藥 名: ACONITI RADIX

英文名: Common Monkshood Mother Root

基 原:本品為毛茛科 Ranunculaceae 植物鳥頭 Aconitum carmichaelii Debeaux 之乾燥主根 (母根)。

採收加工:於6月下旬至8月上旬採挖,除去子根、鬚根及泥沙,曬乾。

藥材性狀:本品塊根呈長圓錐形,部分稍彎曲,長 2.0~4.5 cm,直徑 0.8~3.5 cm。表面灰棕色,有細縱皺,周圍有錐形瘤起的小支根,並有割去子根後的痕跡。質堅硬,斷面灰白色,粉性。氣微,味帶辛辣而麻舌。

飲片性狀:本品為不規則或長短不一的三角形厚片,表面灰褐色或黃褐色, 有灰棕色形成層環紋。體輕、質脆、斷面有光澤。氣微,微帶有 麻舌感。

生長分佈:多年生草本,莖直立,高約50~120 cm,喜溫暖濕潤環境,喜光照、耐寒、忌積水,以腐植質壤土及砂質壤土為佳,主產於四川, 湖北、河南、陝西等地亦有栽培。花期6~7月,果期7~8月。

三、藥材組織顯微鑑別 (圖 2)

- 1. 外側為 1~2 列後生皮層,為棕色木栓化細胞。
- 2. 皮層薄壁組織窄,為數層切向延長的薄壁組織。
- 3. 內皮層明顯成環。
- 4. 韌皮部散有篩管群。
- 5. 形成層成環,細胞類多角形。
- 6. 木質部導管多列,呈徑向或略呈 V 形排列。
- 7. 髓部明顯。薄壁細胞充滿澱粉粒。

四、藥材粉末顯微鑑別 (圖 3)

- 1. 本品粉末灰黃色。
- 2. 澱粉粒極多,單粒球形、長圓形或腎形,臍點點狀、裂縫狀或人字狀,

- 直徑 10~20 μm; 複粒由 2~15 分粒組成。偏光顯微鏡下成黑十字。
- 3. 後生皮層細胞表面觀類長方形或長多角形, 垂周壁稍厚, 有的橫向壁細 波狀彎曲, 有的壁呈瘤狀增厚突入細胞腔內。
- 4. 導管多為網紋導管及有緣孔紋導管直徑 20~50 μm, 有的導管分子粗短 拐曲或縱橫連接, 有緣孔紋較密。

圖 1A 川烏藥材圖

圖 1B 川烏飲片藥材圖

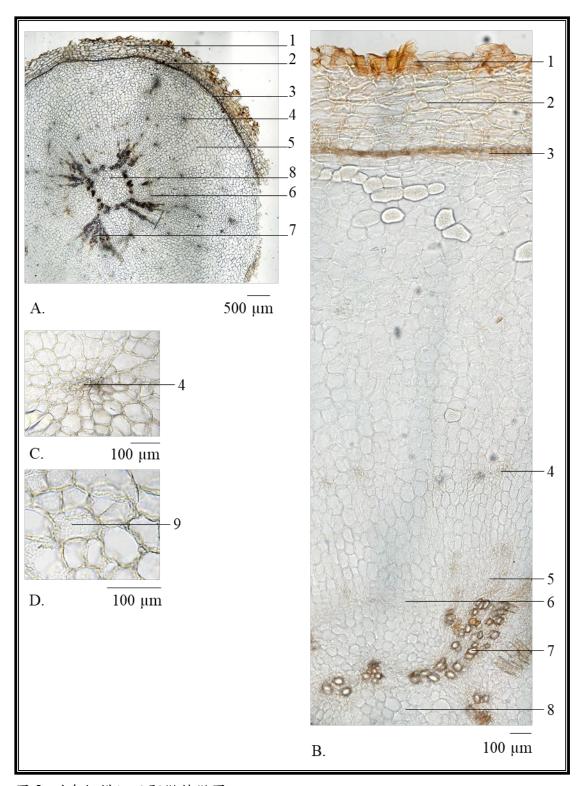


圖 2 川烏根橫切面顯微特徵圖

A.横切面 B.横切面放大圖 C.篩管群 D.薄壁細胞富含澱粉粒 1.後生皮層 2.皮層 3.內皮層 4.篩管 5.韌皮部 6.形成層 7.木質部 8.髓 9.糊化澱粉粒

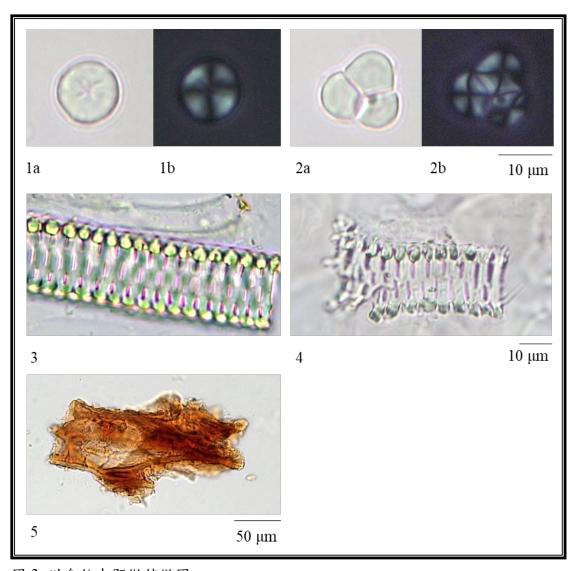


圖 3 川鳥粉末顯微特徵圖

- a.光學顯微鏡下特徵 b.偏光顯微鏡下特徵
- 1.澱粉粒(單粒) 2.澱粉粒(複粒) 3.孔紋導管 4.網紋導管 5.後生皮層細胞

參考文獻

- 1. 衛生福利部臺灣中藥典第四版編輯工作小組(2021)。臺灣中藥典第四版。台北市:衛生福利部。36頁。
- 2. 張永勳、何玉玲(主編)(2019)。彩色常用中藥材鑑別圖鑑。臺北市:衛生福利部,12頁。
- 3. 張永勳、何玉玲(主編)(2009)。中藥彩色圖鑑。臺北市:衛生署中醫藥委員會。 18頁。
- 4. 張永勳、何玉玲(主編)(2015)。臺灣市售易混淆中藥鑑別圖鑑。臺北市:衛生 福利部,17~20頁。
- 5. 戴新民(1987)。現代本草中國藥材學上冊。啟業書局。534~538頁。
- 6. 戴新民(1978)。中藥栽培法。啟業書局。202~203 頁。
- 7. 中華人民共和國香港特別行政區政府衞生署中醫藥事務部(2015)。香港中藥 材標準第七冊。香港:香港特別行政區政府衞生署中醫藥事務部。39~51 頁。
- 8. 肖培根等(2001)。新編中藥志第一卷。北京:化學工業出版社。539~541 頁。
- 9. 陳士林、林余霖(主編)(2013)。中藥飲片標準圖鑑。福州:海峽出版發行集團· 福建科學技術出版社。64~65頁。
- 10. 國家藥典委員會(2020)。中華人民共和國藥典 2020 年版一部。北京:中國醫藥科技出版社。40~41 頁。
- 11. 趙中振、陳虎彪(主編)(2016)。中藥顯微鑑定圖典。福建科學技術出版社。36~37 頁。
- 12. 李家實(主編)(1993)。中藥鑑定學。貴州科技出版社。42~44 頁。
- 13. 范崔生(主編)(1995)。中藥採收鑑別應用全書。江西科學技術出版社。34~35 頁。
- 14. 樓之岑、秦波(主編)(1995)。常用中藥材品種整理和質量研究第二冊。北京大學醫學出版社。142~189頁。
- 15. 陳代賢、郭秋月(主編)(2017)。中藥真偽質量快速影像檢定(下冊)。北京人民 衛生出版社。41~52 頁。

川鳥 HPLC

一、材料

購自於臺灣各地中藥店川烏藥材共 10 批。

二、儀器及層析管柱

(一) HPLC 儀器及層析管柱

Waters 2695 Separation Module, 包含 Waters 2998、Photodiode Array Detector; 層析管柱 Agilent ZORBAX Extend C18 Column (250 × 4.6 mm, 5 μm)。

(二) UPLC 儀器及層析管柱

Agilent 1290 series,包含 Degasser (G1330B)、Quat Pump (G4220A)、DAD (G4212A)、Autosampler (G4226A)、Column Oven (G1316C.);層析管柱 Agilent poroshell 120 EC-C18 Column (100 × 3.0 mm, 2.7 μm)。

三、實驗藥品及試劑來源

(一)試劑

乙腈(99.9%)購自於友和貿易股份有限公司;乙酸購自於 Merck;氨試液 (25%)購自於 Merck。

(二)標準品

標準品新鳥頭鹼(Mesaconitine)、鳥頭鹼(Aconitine)與次鳥頭鹼(Hypaconitine) 購自於普思生物科技股份有限公司,純度皆98%以上。

四、方法

(一)萃取條件

取本品粉末(過第 20 號篩網)準確稱取 $2.0\,\mathrm{g}$,置 $50\,\mathrm{mL}$ 離心管中,準確加入 25%氨試液 $3\,\mathrm{mL}$ 和異丙醇:乙酸乙酯(1:1)混合溶液 $45\,\mathrm{mL}$,超音波振盪處理(功率 $300\,\mathrm{W}$,頻率 $40\,\mathrm{kHz}$) $30\,\mathrm{分鐘}$,離心 $10\,\mathrm{分鐘}$ (約 $4000\,\mathrm{x}$ g),以 No.1 濾紙過濾,取濾液移入 $50\,\mathrm{mL}$ 容量瓶中,加異丙醇:乙酸乙酯(1:1)混合溶液至刻度,在 $40\,\mathrm{cm}$ C以下減壓濃縮至乾,加 0.01% 鹽酸甲醇溶液溶解,移入 $5\,\mathrm{mL}$ 容量瓶中,搖勻再過濾(Syringe filter, PTFE $0.22\,\mathrm{mm}$),取濾液即得。

(二)萃取次數

由於萃取條件步驟複雜,只做1次川烏藥材萃取,步驟同萃取條件。

(三) 對照標準品溶液

1. 準確稱取標準品新鳥頭鹼 10 mg, 加 10 mL 的 0.01% 鹽酸甲醇溶液製成每 1 mL 含新鳥頭鹼 1000 μg 的標準品儲備溶液,並以 0.01% 鹽酸甲醇溶液稀釋至 50 μg/mL 製成對照標準品溶液。

- 2. 準確稱取標準品鳥頭鹼7.2 mg,加10 mL的0.01%鹽酸甲醇溶液製成每1 mL含鳥頭鹼720 μg的標準品儲備溶液,並以0.01%鹽酸甲醇溶液稀釋至50 μg/mL製成對照標準品溶液。
- 3. 準確稱取標準品次烏頭鹼 6.0 mg, 加 10 mL 的 0.01% 鹽酸甲醇溶液製成每 1 mL 含次烏頭鹼 600 μg 的標準品儲備溶液,並以 0.01% 鹽酸甲醇溶液稀釋至 50 μg/mL 製成對照標準品溶液。

(四) 檢品溶液

取本品粉末(過第 20 號篩網)準確稱取 2.0 g,置 50 mL 離心管中,準確加入 25%氨試液 3 mL 和異丙醇:乙酸乙酯(1:1)混合溶液 45 mL,超音波振盪處理(功率 300 W,頻率 40 kHz) 30 分鐘,離心 10 分鐘(約 4000 \times g),以 No.1 濾紙過濾,取濾液移入 50 mL 容量瓶中,加異丙醇:乙酸乙酯(1:1)混合溶液至刻度,在 40 °C以下減壓濃縮至乾,加 0.01% 鹽酸甲醇溶液溶解,移入 5 mL 容量瓶中,搖勻再過濾(Syringe filter, PTFE 0.22 μ m),取濾液即得。

(五) 測定法

分別準確吸取對照標準品溶液、檢品溶液 10 μL,注入 HPLC,測定, 用標準曲線計算溶液中新烏頭鹼、烏頭鹼與次烏頭鹼的含量,即得。

(六)檢量線

- 準確吸取新鳥頭鹼標準品儲備液適量(1000 μg/mL),以 0.01% 鹽酸甲醇溶液稀釋成含新鳥頭鹼分別為 250、100、50、25、10 μg/mL 的標準品溶液。以上溶液各取 10 μL 分別注入 HPLC 進行定量分析,利用標準品之波峰面積(y 軸)和標準品之濃度(x 軸)進行線性回歸,並求得檢量線之方程式 y = ax + b 與相關係數 R²。
- 2. 準確吸取烏頭鹼標準品儲備液適量(720 μg/mL),以 0.01% 鹽酸甲醇溶液稀釋成含烏頭鹼分別為 360、180、100、50、25、10 μg/mL 的標準品溶液。以上溶液各取 10 μL 分別注入 HPLC 進行定量分析,利用標準品之波峰面積(y 軸)和標準品之濃度(x 軸)進行線性回歸,並求得檢量線之方程式 y = ax + b 與相關係數 R²。
- 3. 準確吸取次烏頭鹼標準品儲備液適量(600 μg/mL),以 0.01% 鹽酸甲醇溶液稀釋成含次烏頭鹼分別為 300、150、100、50、25、10 μg/mL 的標準品溶液。以上溶液各取 10 μL 分別注入 HPLC 進行定量分析,利用標準品之波峰面積(y 軸)和標準品之濃度(x 軸)進行線性回歸,並求得檢量線之方程式y=ax+b 與相關係數 R²。

(七)精密度試驗

- 1. 以新鳥頭鹼濃度為 50 μg/mL 之對照標準品溶液連續進樣 5 針,以新鳥頭鹼的波峰面積為指標,求出相對標準差。
- 以鳥頭鹼濃度為50 μg/mL之對照標準品溶液連續進樣5針,以鳥頭鹼的 波峰面積為指標,求出相對標準差。
- 3. 以次鳥頭鹼濃度為 50 μg/mL 之對照標準品溶液連續進樣 5 針,以次鳥頭鹼的波峰面積為指標,求出相對標準差。

(八) 重複性與穩定性試驗

- 1. 重複性:取同一批市售川烏藥材粉末,依川烏藥材檢品溶液製備方法平行 製備 5 份川烏藥材檢品溶液,進樣測定,以新烏頭鹼、烏頭鹼與次烏頭鹼 的含量(%)為指標,求出相對標準差。
- 2. 穩定性:取同一批市售川烏藥材粉末,依川烏藥材檢品溶液製備方法製備 川烏藥材檢品溶液,分別在 0、2、4、8、24 小時進樣測定,以新烏頭鹼、 烏頭鹼與次烏頭鹼的含量為指標,求出相對標準差。

(九) 偵測極限與定量極限試驗

- 偵測極限(Limit of Detection, LOD): 將已知濃度之標準品溶液不斷稀釋, 並以訊號雜訊比為≧3:1 時之濃度,作為偵測極限估計值。
- 2. 定量極限(Limit of Quantification, LOQ): 將已知濃度之標準品溶液不斷稀釋,並以訊號雜訊比為≥10:1 時之濃度,作為定量極限估計值。

(十)添加回收率試驗

- 1. 取已知新烏頭鹼含量的川烏藥材粉末 5 份,每份準確稱取約 1.0 g,分別加入新烏頭鹼 0.2 mg,並按檢品溶液製備方法操作測定。
- 2. 取已知鳥頭鹼含量的川鳥粉末 5 份,每份準確稱取約 1.0 g,分別加入加入 1 mL 的鳥頭鹼溶液(50 μg/mL),並按檢品溶液製備方法操作測定。
- 3. 取已知次鳥頭鹼含量的川鳥藥材粉末 5 份,每份準確稱取約 1.0 g,分別加入次鳥頭鹼 0.4 mg,並按檢品溶液製備方法操作測定。

(十一) HPLC 分析條件

1. 層析管:Agilent ZORBAX Extend C18 Column (250 × 4.6 mm, 5 μm)

2. 檢測波長: UV 235 nm

3. 流速: 1.0 mL/min

4. 管柱温度:35°C

5. 注入量:10 μL

6. 移動相:

時間(min)	乙腈(%)	0.2%乙酸(含 25%氨試液)(v/v,%)
0	24	76
5	31	69
20	45	55
40	78	22
50	100	0

^{*}取 2 mL 乙酸配成 1000 mL 乙酸水溶液再加入 10 mL 氨試液(25%) (pH 值約 10.02)。

(十二)臺灣市售川烏藥材含量測定

取 10 批市售川烏藥材依檢品溶液製備方法製備檢品溶液,取各 10 μL 連續 3 針注入 HPLC,所得平均波峰面積依附錄 I 公式計算樣品新烏頭鹼、烏頭鹼與次烏頭鹼的百分比含量。

(十三)川鳥檢品之 UPLC 分析條件

1. 層析管: Agilent Poroshell 120 EC-C18 Column (100 x 3.0 mm, 2.7 μm)

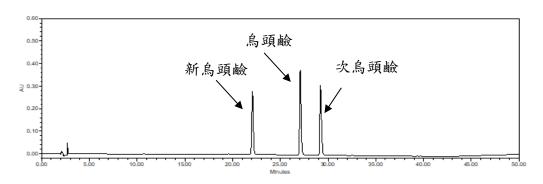
2. 檢測波長: UV 235 nm

3. 流速: 0.4 mL/min

4. 管柱温度:35°C

5. 注入量:1 μL

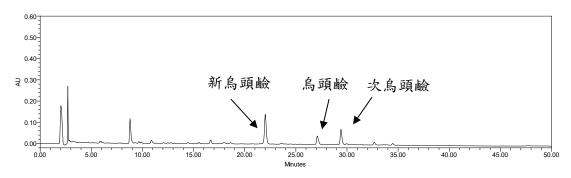
6. 移動相:


時間(min)	乙腈(%)	0.2%乙酸(含 25%氨試液)(v/v, %)
0	24	76
1	31	69
6	45	55
12	78	22
15	100	0

^{*}取 2 mL 乙酸配成 1000 mL 乙酸水溶液再加入 10 mL 氨試液(25%) (pH 值約 10.02)。

五、結果

(一)標準品新鳥頭鹼、鳥頭鹼與次鳥頭鹼之 HPLC 層析


於滯留時間 22.1、27.1 與 29.2 分鐘處分別顯示新鳥頭鹼、鳥頭鹼與次鳥頭鹼標準品波峰(圖一)。

圖一、新鳥頭鹼、鳥頭鹼與次鳥頭鹼標準品溶液之 HPLC 層析圖

(二)市售川烏藥材檢品之 HPLC 層析

於滯留時間 22.0、27.1 與 29.4 分鐘處分別顯示川烏藥材檢品中新烏頭鹼、烏頭鹼與次烏頭鹼波峰(圖二)。新烏頭鹼分離率(R)為 3.28,拖尾因子(T)為 1.10;烏頭鹼分離率(R)為 1.62,拖尾因子(T)為 1.20;次烏頭鹼分離率(R)為 7.01,拖尾因子(T)為 1.19。

圖二、市售川烏藥材檢品之 HPLC 層析圖

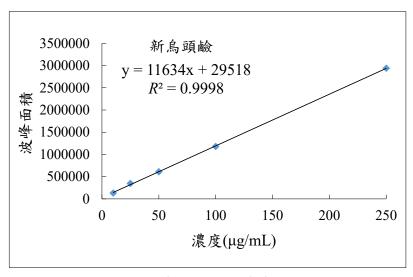
表一、新鳥頭鹼、鳥頭鹼與次鳥頭鹼之分離率與拖尾因子

	新鳥頭鹼	烏頭鹼	次烏頭鹼
分離率	3.28	1.62	7.01
拖尾因子	1.10	1.20	1.19

(三)萃取條件

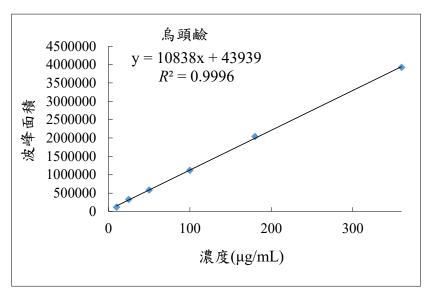
結果顯示以25%氨試液3 mL和異丙醇:乙酸乙酯(1:1)混合溶液為溶媒時所測得之新鳥頭鹼、鳥頭鹼與次鳥頭鹼的波峰面積為佳。

表二、萃取條件

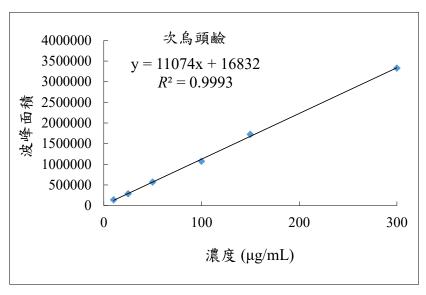

溶媒	新鳥頭鹼	烏頭鹼	次鳥頭鹼
	波峰面積	波峰面積	波峰面積
25%氨試液 3 mL和異丙醇: 乙酸乙酯(1:1)混合溶液	249150	96511	824484

(四)萃取次數

由於萃取條件步驟複雜,只做1次川烏藥材萃取,結果同表二。


(五)標準品新鳥頭鹼、鳥頭鹼與次鳥頭鹼檢量線

1. 經不同濃度新鳥頭鹼(x)對各自層析波峰面積的反應值(y)所得到的檢量線方程式為 y = 11634x + 29518, $R^2 = 0.9998$,顯示濃度在 $10-250 \mu g/mL$ 有良好的線性關係(圖三)。


圖三、新鳥頭鹼之檢量線圖

2. 經不同濃度鳥頭鹼(x)對各自層析波峰面積的反應值(y)所得到的檢量線方程式為 y = 10838x + 43939 , $R^2 = 0.9996$, 顯示濃度在 $10-360 \mu g/mL$ 有良好的線性關係(圖四)。

圖四、烏頭鹼之檢量線圖

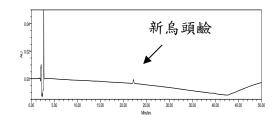
3. 經不同濃度次烏頭鹼(x)對各自層析波峰面積的反應值(y)所得到的檢量線方程式為 y = 11074x + 16832, $R^2 = 0.9993$,顯示濃度在 10-300 $\mu g/mL$ 有良好的線性關係(圖五)。

圖五、次鳥頭鹼之檢量線圖

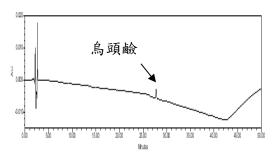
表三、新鳥頭鹼、鳥頭鹼與次鳥頭鹼之檢量線方程式

對照標準品	濃度(μg/mL)	線性回歸方程式	R^2
新烏頭鹼	10–250	y = 11634x + 29518	0.9998
烏頭鹼	10–360	y = 10838x + 43939	0.9996
次烏頭鹼	10–300	y = 11074x + 16832	0.9993

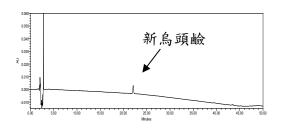
(六)精密度試驗

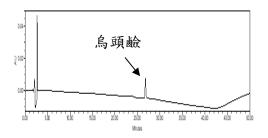

實驗結果顯示,利用 HPLC 定量條件的精密度良好,新鳥頭鹼、鳥頭鹼與次鳥頭鹼精密度之相對標準差分別為 0.24%、0.87%與 0.16%,均在系統適用性要求內。

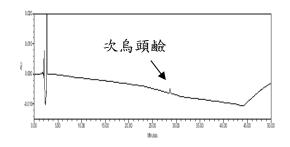
(七)重複性與穩定性試驗

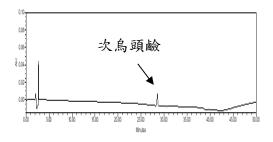

實驗結果顯示,利用 HPLC 定量條件的重複性良好,新烏頭鹼、烏頭 鹼與次烏頭鹼重複性之相對標準差分別為 1.76%、3.31%與 1.47%,均在 系統適用性要求內。新烏頭鹼、烏頭鹼與次烏頭鹼在 24 小時內穩定,穩 定性相對標準差分別為 1.26%、3.11%與 1.32%,變化差異小,若所有樣 品處理都在 24 小時內完成,則無太大差異。

(八) 偵測極限與定量極限試驗


新烏頭鹼偵測極限為 $0.2 \,\mu g/mL$ (圖六),定量極限為 $1.0 \,\mu g/mL$ (圖七)。 烏頭鹼偵測極限為 $0.2 \,\mu g/mL$ (圖八),定量極限為 $0.5 \,\mu g/mL$ (圖九)次烏頭 鹼偵測極限為 $0.5 \,\mu g/mL$ (圖十),定量極限為 $2.0 \,\mu g/mL$ (圖十一)。


圖六、新鳥頭鹼之偵測極限層析圖


圖八、鳥頭鹼之偵測極限層析圖



圖七、新鳥頭鹼之定量極限層析圖

圖九、鳥頭鹼之定量極限層析圖

圖十、次烏頭鹼之偵測極限層析圖

圖十一、次烏頭鹼之定量極限層析圖

表四、各項檢驗分析

檢測項目	新烏頭鹵		烏頭鹼	
	濃度	R.S.D. (%)	濃度	R.S.D. (%)
精密度 (n=5)	50 μg/mL	0.24	50 μg/mL	0.87
重複性 (n=5)	檢品溶液(No.6)	1.76	檢品溶液(No.6)	3.31
穩定性 (n=5)	檢品溶液(No.6)	1.26	檢品溶液(No.6)	3.11
偵測極限 (n=1)	0.2 μg/mL	-	0.2 μg/mL	-
定量極限 (n=1)	1.0 μg/mL	-	0.5 μg/mL	-
檢測項目	次鳥頭鹼	Ì		
	濃度	R.S.D. (%)		
精密度 (n=5)	50 μg/mL	0.16		
重複性 (n=5)	檢品溶液(No.6	1.47		
穩定性 (n=5)	檢品溶液(No.6)	1.32		
偵測極限 (n=1)	0.5 μg/mL	-		
定量極限 (n=1)	2.0 μg/mL	-		

(九)添加回收率試驗

新鳥頭鹼平均添加回收率為94.7%,相對標準偏差為2.40%(表五)。鳥頭鹼平均添加回收率為93.1%,相對標準偏差為2.13%(表六)。次鳥頭鹼平均添加回收率為91.7%,相對標準偏差為1.69%(表七)。

表五、新鳥頭鹼添加回收率

編號	藥材稱重	含有量	加入量	測得量	回收率	平均回收	R.S.D.
%	(g)	(mg)	(mg)	(mg)	(%)	率(%)	(%)
1	1.02	0.1389	0.2	0.3258	93.43		
2	1.02	0.1389	0.2	0.3236	92.34		
3	1.02	0.1389	0.2	0.3299	92.50	94.69	2.40
4	1.02	0.1389	0.2	0.3269	93.98		
5	1.02	0.1389	0.2	0.3353	98.22		

表六、烏頭鹼添加回收率試驗

編號	藥材稱重	含有量	加入量	測得量	回收率	平均回收	R.S.D.
細弧	(g)	(mg)	(mg)	(mg)	(%)	率(%)	(%)
1	1.02	0.0625	0.05	0.1082	91.49		
2	1.02	0.0625	0.05	0.1107	96.39		
3	1.02	0.0625	0.05	0.1084	91.76	93.14	2.13
4	1.02	0.0625	0.05	0.1088	92.54		
5	1.02	0.0625	0.05	0.1093	93.54		

表七、次鳥頭鹼添加回收率

編號	藥材稱重	含有量	加入量	測得量	回收率	平均回收	R.S.D.
納加	(g)	(mg)	(mg)	(mg)	(%)	率(%)	(%)
1	1.02	0.4679	0.4	0.8421	93.56		
2	1.02	0.4679	0.4	0.8273	89.84		
3	1.02	0.4679	0.4	0.8376	92.42	91.72	1.69
4	1.02	0.4679	0.4	0.8295	90.41		
5	1.02	0.4679	0.4	0.8375	92.40		

(十)臺灣市售川烏含量測定

10 批川烏藥材之含量測定結果(乾燥品)如表八所示,新烏頭鹼的含量為 0.005-0.024%,烏頭鹼的含量為 0.001-0.009%,次烏頭鹼的含量為 0.018-0.039%,新烏頭鹼、烏頭鹼與次烏頭鹼的總含量為 0.024-0.065%。建議川烏藥材指標成分新烏頭鹼、烏頭鹼與次烏頭鹼的總含量在 0.05-0.17%之間。理論板數按新烏頭鹼波峰計算應不低於 5000 (實際值為 77907),烏頭鹼波峰計算應不低於 5000 (實際值為 147771)。

表八、臺灣市售川烏藥材檢品之新鳥頭鹼、鳥頭鹼與次鳥頭鹼的含量

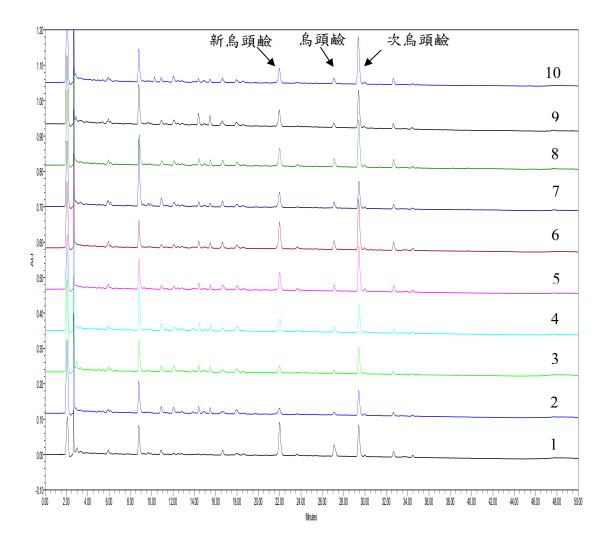
藥材編號	新鳥頭鹼	烏頭鹼	次鳥頭鹼	新鳥頭鹼+鳥頭鹼+
(No.)	含量(%)	含量(%)	含量(%)	次鳥頭鹼總含量(%)
1 (NDB)	0.024	0.009	0.023	0.057
2 (NF-1)	0.005	0.001	0.018	0.024
3 (NF-2)	0.005	0.001	0.019	0.026
4 (NJ)	0.009	0.003	0.020	0.033
5 (CA-1)	0.013	0.003	0.034	0.050
6 (CA-2)	0.021	0.005	0.039	0.065
7 (SGA)	0.012	0.003	0.020	0.035
8 (SUA)	0.014	0.006	0.036	0.055
9 (SUB)	0.012	0.002	0.028	0.043
10 (SUC)	0.011	0.003	0.036	0.050
平均值±S.D.	0.013±0.006	0.004±0.002	0.027±0.008	0.044±0.014

(十一)川烏藥材之 HPLC 指紋圖譜的建立

取 10 批市售川鳥檢品溶液各 10 μL 進樣,進行 HPLC 指紋圖譜的 測定。

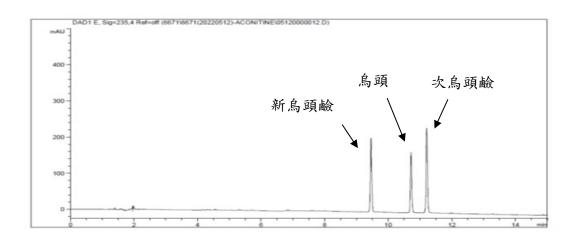
1. 層析管:Agilent ZORBAX Extend C18 Column (250 × 4.6 mm, 5 μm)

2. 檢測波長: UV 235 nm


3. 流速: 1.0 mL/min

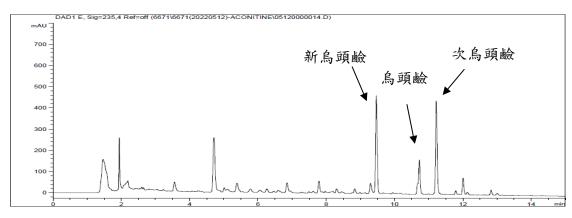
4. 管柱溫度:35°C

5. 注入量:10 μL


6. 移動相:

時間(min)	乙腈(%)	0.2%乙酸(含 25%氨試液)(v/v, %)
0	24	76
5	31	69
20	45	55
40	78	22
50	100	0

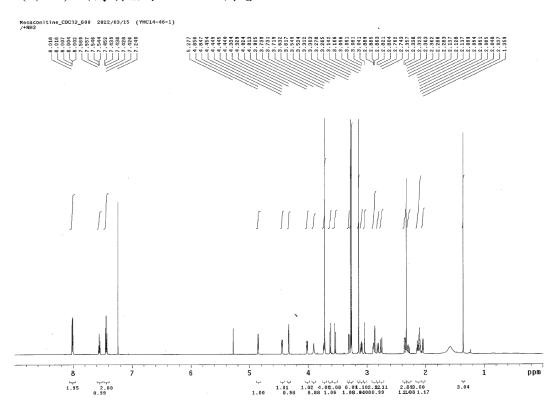
圖十二、10批川烏藥材之 HPLC 指紋圖譜


(十二)標準品新烏頭鹼、烏頭鹼與次烏頭鹼之 UPLC 層析 於滯留時間 9.46、10.7 與 11.2 分鐘處顯示新烏頭鹼、烏頭鹼與 次烏頭鹼標準品波峰(圖十三)。

圖十三、新鳥頭鹼、鳥頭鹼與次鳥頭鹼標準品溶液之 UPLC 層析圖

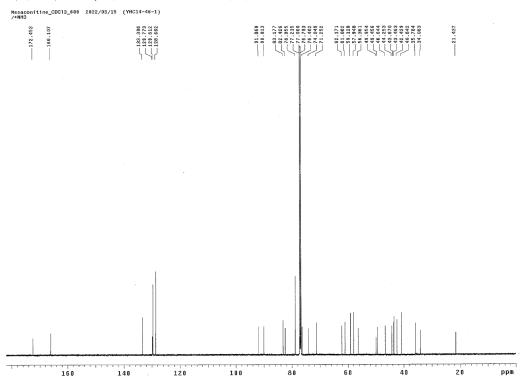
(十三) 市售川鳥檢品之 UPLC 層析

於滯留時間 9.46、10.7 與 11.2 分鐘處分別顯示川鳥檢品中新鳥頭 鹼、鳥頭鹼與次鳥頭鹼波峰(圖十四)。

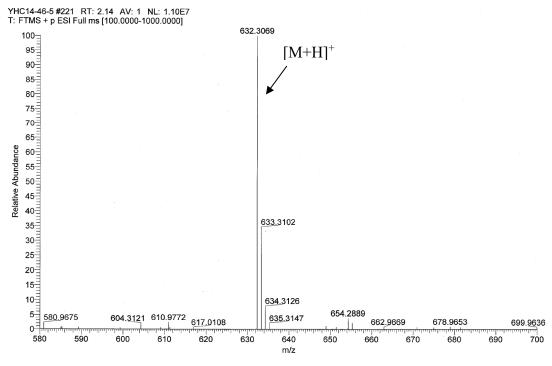

圖十四、市售川烏檢品之 UPLC 層析圖

(十四)新鳥頭鹼的分子式、分子量與熔點

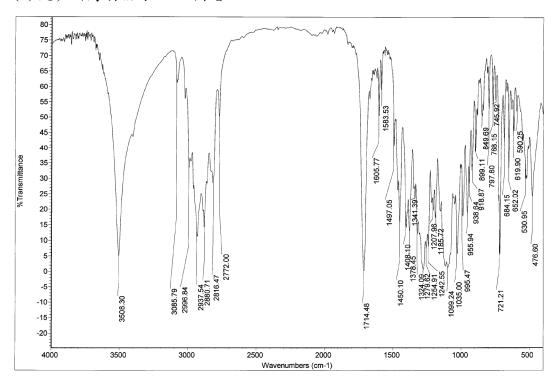
分子式: C33H45NO11; 分子量: 631.7; 熔點: 208-210°C; 白色粉末。


(十五)新鳥頭鹼的結構

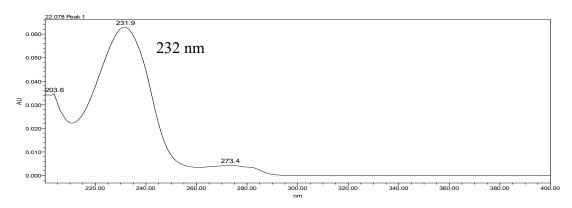
(十六)新鳥頭鹼的 ¹H NMR 圖譜


圖十五、新鳥頭鹼的 ¹H NMR 圖譜(CDCl₃)

(十七) 新鳥頭鹼的 ¹³C NMR 圖譜


圖十六、新鳥頭鹼的 ^{13}C NMR 圖譜(CDCl₃)

(十八)新鳥頭鹼的 ESI-MS 圖譜


圖十七、新鳥頭鹼的 ESI-MS 圖譜

(十九) 新鳥頭鹼的 FTIR 圖譜

圖十八、新鳥頭鹼的 FTIR 圖譜

(二十)新鳥頭鹼的 UV 圖譜

圖十九、新鳥頭鹼的 UV 圖譜

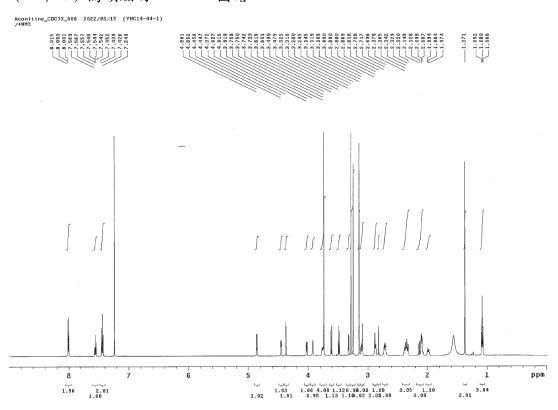
(二十一)新鳥頭鹼的氫、碳化學位移

新鳥頭鹼

表九、新鳥頭鹼氫、碳化學位移(CDCl₃)^a

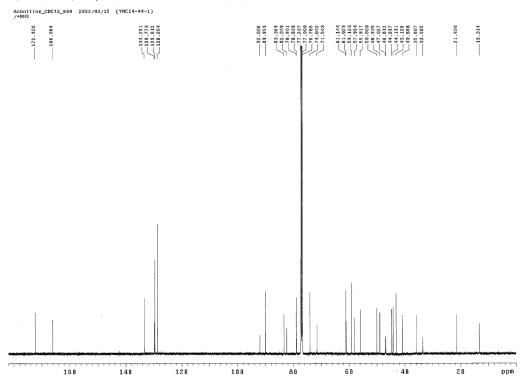
osition	$\delta_{H} (600 \text{ MHz})$	$\delta_{\rm C}$ (150 MHz)
1	3.09 (dd, 9.0, 6.6)	82.4
2	2.10-2.15 (m), 2.27-2.30 (m)	34.1
3	3.74 (d, 4.8)	71.3
4	-	43.5
5	2.04 (d, 6.6)	46.6
6	4.02 (d, 6.6)	83.2
7	2.86 (s)	43.7
8	-	91.9
9	2.88-2.90 (m)	44.3
10	2.09-2.11 (m)	40.8
11	-	50.0
12	2.09-2.12 (m), 2.80-2.84 (m)	35.9
13	-	74.0
14	4.85 (d, 6.6)	78.9
15	3.31 (d, 5.4)	90.0
16	4.45 (dd, 5.4, 3.0)	78.9
17	2.35 (d, 11.4), 2.76 (d, 11.4)	49.5
18	3.54 (d, 9.0), 3.62 (d, 9.0)	76.4
19	3.04 (s)	62.2
1′	-	172.5
2'	1.36 (s)	21.4
1"	-	166.1
2"	-	129.8
3", 7"	8.01 (dd, 8.4, 1.2)	129.6
4",6"	7.44 (t, 8.4)	128.7
5''	7.54–7.57 (m)	133.3

N-CH ₃	2.32 (s)	42.4
1-OCH ₃	3.27 (s)	56.4
6-OCH ₃	3.14 (s)	57.9
15-OCH ₃	3.72 (s)	61.1
16-OH	4.33 (d, 3.0)	-
18-OCH ₃	3.28 (s)	59.1

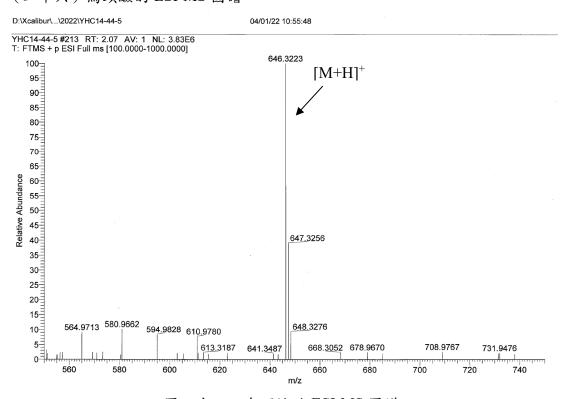

^a(Multiplicity, *J* in Hz) in ppm.

(二十二) 烏頭鹼的分子式、分子量與熔點

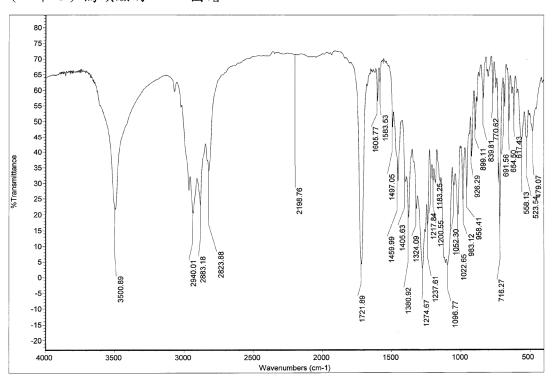
分子式: C34H47NO11;分子量:645.7;熔點:204-206°C;白色粉末。


(二十三) 烏頭鹼的結構

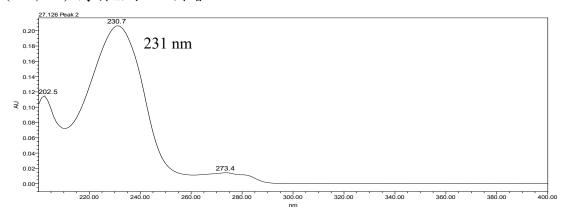
(二十四) 烏頭鹼的 ¹H NMR 圖譜


圖二十、烏頭鹼的 ¹H NMR 圖譜(CDCl₃)

(二十五) 鳥頭鹼的 ¹³C NMR 圖譜


圖二十一、烏頭鹼的 ¹³C NMR 圖譜(CDCl₃)

(二十六) 烏頭鹼的 ESI-MS 圖譜


圖二十二、烏頭鹼的 ESI-MS 圖譜

(二十七) 鳥頭鹼的 FTIR 圖譜

圖二十三、烏頭鹼的 FTIR 圖譜

(二十八) 烏頭鹼的 UV 圖譜

圖二十四、烏頭鹼的 UV 圖譜

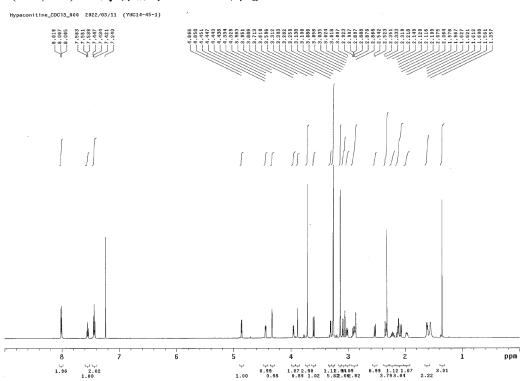
(二十九) 烏頭鹼的氫、碳化學位移

烏頭鹼

表十、鳥頭鹼的氫、碳化學位移(CDCl₃)^a

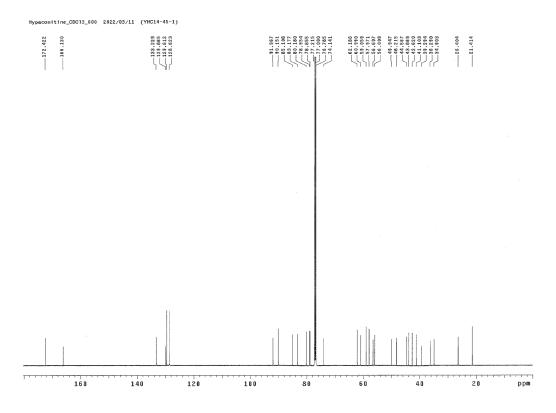
一一一一一一一一	7型、碳化学位为(CDCI3)	
position	δ _H (600 MHz)	δ _C (150 MHz)
1	3.11 (dd, 7.8, 6.0)	82.3
2	1.97-2.00 (m), 2.35-2.40 (m)	33.6
3	3.75 (dd, 9.6, 4.8)	71.5
4	-	43.1
5	2.07–2.10 (m)	46.8
6	4.02 (d, 6.6)	83.4
7	2.82 (s)	44.7
8	-	92.0
9	2.86-2.89 (m)	44.2
10	2.09-2.11 (m)	40.9
11	-	50.0
12	2.08-2.15 (m), 2.68-2.74 (m)	35.8
13	-	74.0
14	4.86 (d, 5.4)	78.8*
15	3.32 (d, 5.4)	90.0
16	4.45 (dd, 5.4, 2.4)	78.9*
17	2.32-2.37 (m), 2.86-2.89 (m)	47.0
18	3.48 (d, 9.0), 3.61 (d, 9.0)	76.8
19	3.09 (s)	61.0
1'	-	172.4
2'	1.37 (s)	21.4
1''	-	166.1
2"	-	129.8
3", 7"	8.01 (dd, 7.8, 1.2)	129.6
4",6"	7.44 (t, 8.4)	128.7

5''	7.54–7.57 (m)	133.3
N-CH2CH3	2.35–2.40 (m), 2.68–2.74 (m)	48.9
N-CH ₂ CH ₃	1.08 (s)	13.3
1-OCH ₃	3.25 (s)	55.9
6-OCH ₃	3.15 (s)	58.0
15-OCH ₃	3.73 (s)	61.1
16-OH	4.37 (d, 2.4)	-
18-OCH ₃	3.28 (s)	59.1

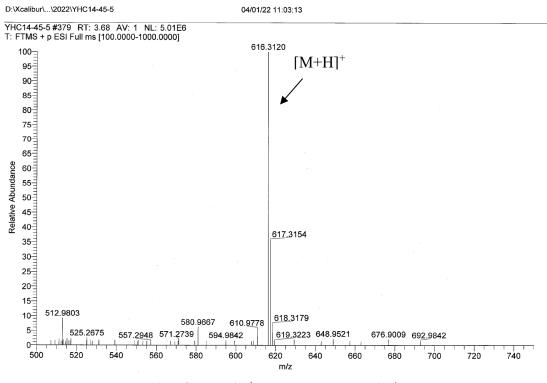

^a(Multiplicity, *J* in Hz) in ppm.

(三十) 次鳥頭鹼的分子式、分子量與熔點

分子式: C33H45NO10; 分子量: 615.7; 熔點: 198-200°C; 白色粉末。


(三十一) 次鳥頭鹼的結構

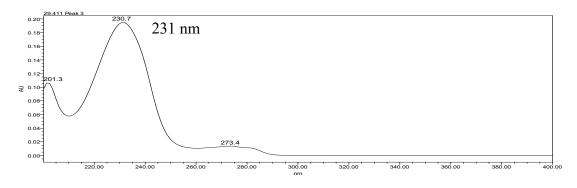
(三十二) 次鳥頭鹼的 ¹H NMR 圖譜


圖二十五、次鳥頭鹼的 ¹H NMR 圖譜(CDCl₃)

(三十三) 次鳥頭鹼的 ¹³C NMR 圖譜


圖二十六、次鳥頭鹼的 ¹³C NMR 圖譜(CDCl₃)

(三十四)次烏頭鹼的 ESI-MS 圖譜


圖二十七、次鳥頭鹼的 ESI-MS 圖譜

(三十五)次鳥頭鹼的 FTIR 圖譜

圖二十八、次烏頭鹼的 FTIR 圖譜

(三十六)次鳥頭鹼的 UV 圖譜

圖二十九、次鳥頭鹼的 UV 圖譜

(三十七)次鳥頭鹼的氫、碳化學位移

次鳥頭鹼

表十一、次烏頭鹼的氫、碳化學位移(CDCl₃)^a

position	$\delta_{H} (600 \text{ MHz})$	δ_{C} (150 MHz)
1	3.02 (dd, 10.2, 6.6)	85.1
2	1.95–1.99 (m), 2.19–2.26 (m)	26.4
3	1.61-1.63 (m)	34.3
4	-	39.3
5	2.07 (d, 6.6)	48.2
6	3.96 (d, 6.6)	83.2
7	2.87 (s)	43.9
8	-	92.0
9	2.89-2.92 (m)	44.6
10	2.10-2.15 (m)	41.1
11	-	49.9
12	2.10-2.15 (m), 2.89-2.92 (m)	36.3
13	-	74.1
14	4.86 (d, 4.8)	79.0
15	3.31 (d, 5.4)	90.2
16	4.45 (dd, 5.4, 3.0)	78.9
17	2.34 (d, 11.4), 2.53 (d, 11.4)	56.0
18	3.09 (d, 7.4), 3.60 (d, 7.4)	80.2
19	3.06 (s)	62.2
1'	-	172.4
2'	1.36 (s)	21.4
1''	-	166.1
2"	-	129.9
3", 7"	8.01-8.02 (m)	129.6
4",6"	7.43 (t, 7.8)	128.6
5''	7.54–7.56 (m)	133.2

N-CH ₃	2.32 (s)	42.6
1-OCH ₃	3.26 (s)	56.6
6-OCH ₃	3.14 (s)	58.0
15-OCH ₃	3.71 (s)	61.0
16-OH	4.33 (d, 3.0)	-
18-OCH ₃	3.26 (s)	59.1

^a(Multiplicity, *J* in Hz) in ppm.

川鳥 TLC

生藥名:ACONITI RADIX

英文名:Common Monkshood Mother Root

基 原:本品為毛茛科 Ranunculaceae 植物烏頭 Aconitum carmichaelii Debeaux 之 乾燥主根(母根)。

一、方法

(一) 檢品溶液 【萃取方法 1】《臺灣中藥典第四版 2021》,修飾《中華人民共和國藥典 2020》

——取本品粉末 2.0 g,加氨試液 2 mL 潤濕後,加乙醚 20 mL,超音波振盪 30 分鐘,過濾,濾液蒸乾,殘渣加二氯甲烷 1 mL 使之溶解,作為檢品溶液。

【萃取方法 2】《香港中藥材標準第七冊》

——取本品粉末 2.0~g ,加 9.1%(w/v) 氨溶液 3~mL ,和乙醚 25~mL ,加蓋,置冰浴中超音波振盪 30~分鐘 ,過濾,濾液蒸乾,殘渣加乙酸乙酯 0.5~mL 使之溶解,作為檢品溶液。

【萃取方法3】(自行開發1)

——取本品粉末 2.0 g,加氨試液 2 mL 潤濕後,加乙醚 20 mL,超音波振盪 30 分鐘,過濾,濾液蒸乾,殘渣加甲醇 1 mL 使之溶解,作為檢品溶液。

【萃取方法 4】(自行開發 2) ✓

——取本品粉末 2.0 g, 加氨試液 2 mL 潤濕後, 加異丙醇: 乙酸乙酯(1:1)混合溶液 20 mL, 超音波振盪 30 分鐘,過 濾,濾液蒸乾,殘渣加甲醇 1 mL 使之溶解,作為檢品溶 液。

- (二) 對照標準品 取鳥頭鹼(Aconitine)、次鳥頭鹼(Hypaconitine)、新鳥頭鹼溶 液 (Mesaconitine)對照標準品,加甲醇製成每 1 mL 各含 1.0 mg 的溶液,作為對照標準品溶液。
- (三) 薄 層 板 HPTLC silica gel $60 \, \text{F}_{254}$, $\underline{10} \, \text{cm} \times \underline{10} \, \text{cm} \times \underline{20} \, \text{cm} \times \underline{10} \, \text{cm}$
- (四) 展 開 劑 【展開劑1】《臺灣中藥典第四版 2021》✓

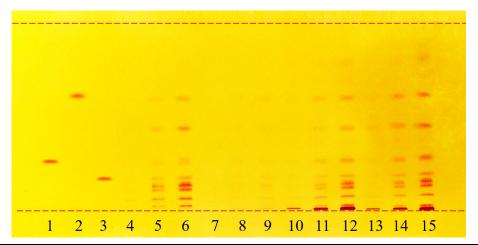
—正己烷:乙酸乙酯:甲醇 (6:4:1) 氨蒸氣飽和 20 分鐘。

【展開劑 2】《中華人民共和國藥典 2020》

——正己烷:乙酸乙酯:甲醇 (6.4:3.6:1) 氨蒸氣飽和 20 分鐘。

【展開劑3】《香港中藥材標準第七冊》

——正己烷:乙酸乙酯:甲醇 (6.4:5:1)9.1% 氨蒸氣飽和 10 分鐘。


- (五) 展 開 槽 $\underline{10}$ cm $\times \underline{10}$ cm $\times \underline{20}$ cm $\times \underline{10}$ cm
- (六) 展 開 展開槽預先平衡 15 分鐘,上行展開,展開距離 8 cm。
- (七) 顯色&檢視 以碘化铋鉀試液(Dragendorff Reagent)和亞硝酸鈉-乙醇試液(NaNO2-EtOH TS)噴霧後,晾乾,置於可見光下檢視。

二、萃法選擇及濃度測試

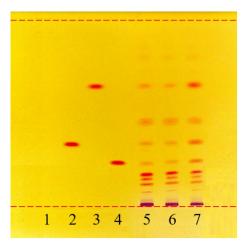
實驗日期:111/04/26 相對溼度(RH):71% 溫度(RT):24.4°C

【展開劑1】《臺灣中藥典第四版2021》——正己烷:乙酸乙酯:甲醇(6:4:1) 氨蒸氣飽和20分鐘。

——HPTLC 碘化铋鉀試液和亞硝酸鈉-乙醇試液顯色後可見光檢出

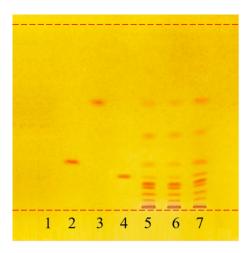
編號	名稱	點注量
1	烏頭鹼(1.0 mg/mL)	5 μL
2	次烏頭鹼(1.0 mg/mL)	5 μL
3	新烏頭鹼(1.0 mg/mL)	5 μL
4,5,6	檢品溶液9【萃取方法1】	2 , 5 , 8 μL
7 , 8 , 9	檢品溶液 9【萃取方法 2】	2 , 5 , 8 μL
10 , 11 , 12	檢品溶液9【萃取方法3】	2 , 5 , 8 μL
13 , 14 , 15	檢品溶液9【萃取方法4】	2 , 5 , 8 μL

建議萃法:四種萃取法中,皆可分離檢出烏頭鹼,次烏頭鹼,新烏頭鹼,因不使用二氯甲烷,且濃度適中,故採用【萃取方法4】。

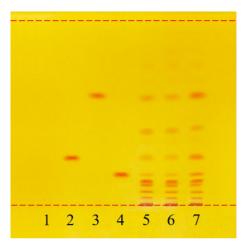

建議點注量:烏頭鹼 $5\,\mu L$, 次烏頭鹼 $5\,\mu L$, 新烏頭鹼 $5\,\mu L$, 檢品溶液 【萃取方法 4】 $8\,\mu L$ 。

三、溶媒系統選擇

實驗日期:111/04/26 相對溼度(RH):71% 溫度(RT):24.4°C


【展開劑1】《臺灣中藥典第四版2021》——正己烷:乙酸乙酯:甲醇(6:4:1) 氨蒸氣飽和20分鐘。

【萃取方法 4】(自行開發 2)—— HPTLC 碘化铋鉀試液和亞硝酸鈉—乙醇試液顯色後可見光檢出 (烏頭鹼 R_f 值為 0.33、次烏頭鹼 R_f 值為 0.65、新烏頭鹼 R_f 值 0.23) 🗸


【展開劑 2】《中華人民共和國藥典 2020》——正己烷:乙酸乙酯:甲醇 (6.4: 3.6:1) 氨蒸氣飽和 20 分鐘。

【萃取方法 4】(自行開發 2)——HPTLC 碘化鈆鉀試液和亞硝酸鈉—乙醇試液顯色後可見光檢出 (烏頭鹼 R_f 值為 0.25、次烏頭鹼 R_f 值為 0.58、新烏頭鹼 R_f 值 為 0.16)

【展開劑 3】《香港中藥材標準第七冊》——正己烷:乙酸乙酯:甲醇 (6.4:5:1) 9.1% 氨蒸氣飽和 10 分鐘。

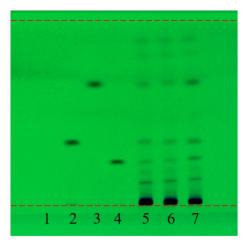
【萃取方法 4】(自行開發 2)——HPTLC 碘化鈆鉀試液和亞硝酸鈉—乙醇試液顯色後可見光檢出 (烏頭鹼 R_f 值為 0.27、次烏頭鹼 R_f 值為 0.61、新烏頭鹼 R_f 值 為 0.17)

1:Blank 4:新鳥頭鹼

2: 鳥頭鹼 5,6: 檢品溶液 9

3: 次鳥頭鹼 7: Spike

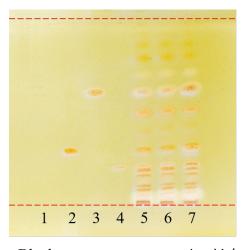
建議溶媒系統:以【萃取方法 4】方式,三種展開劑皆可分離烏頭鹼,次烏頭鹼,新烏頭鹼,其中【展開劑 1】 R_f 值適中,配製簡單,故維持《臺灣中藥典》【展開劑 1】。

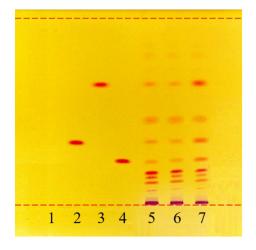

四、觀察方式選擇

實驗日期:111/04/26 相對溼度(RH): 71% 溫度(RT): 24.4 °C

【展開劑 1】《臺灣中藥典第四版 2021》——正己烷:乙酸乙酯:甲醇 (6:4:1) 氨蒸氣飽和20分鐘。

紫外光(254 nm)檢出


【萃取方法 4】(自行開發 2)—HPTLC 【萃取方法4】(自行開發 2)—HPTLC 碘 薰 5 分鐘後可見光檢出



1 2 3 4 5 6 7

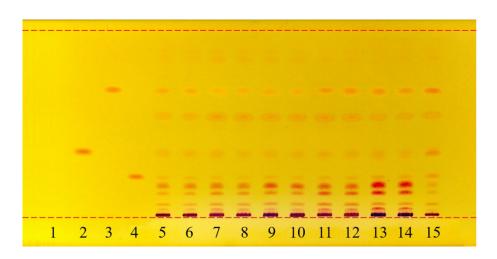
【萃取方法 4】(自行開發 2)—HPTLC 改良式碘化铋鉀噴霧劑(改良式卓根 道夫噴霧劑)顯色後可見光檢出

【萃取方法 4】(自行開發 2)—HPTLC 碘 化铋鉀試液和亞硝酸鈉-乙醇試液顯 色後可見光檢出 ✓

1: Blank 4:新鳥頭鹼

5,6:檢品溶液9 2: 鳥頭鹼

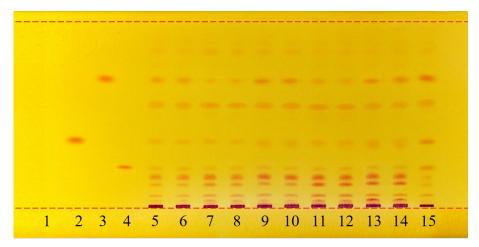
3:次鳥頭鹼 7: Spike


建議觀察方式:以碘薰後可見光檢出,斑點較不明顯。以碘化铋鉀試液和亞硝 酸鈉-乙醇試液顯色後可見光檢出,顯示有較明顯分離之條帶。

五、十批川烏藥材樣品檢測

實驗日期:111/04/26 相對溼度(RH):71% 溫度(RT):24.4°C

【展開劑 1】《臺灣中藥典第四版 2021》——正己烷:乙酸乙酯:甲醇 (6:4:1) 氨蒸氣飽和 20 分鐘。


【萃取方法 4】(自行開發 2)——HPTLC 碘化铋鉀試液和亞硝酸鈉—乙醇試液 顯色後可見光檢出

1	Blank	7,8	檢品溶液 2 (NF1)
2	鳥頭鹼(1.0 mg/mL)	9,10	檢品溶液 3 (NF2)
3	次烏頭鹼(1.0 mg/mL)	11 , 12	檢品溶液 4 (NJ)
4	新烏頭鹼(1.0 mg/mL)	13 , 14	檢品溶液 5 (CA1)
5 , 6	檢品溶液 1 (NDB)	15	Spike (檢品溶液 9)

【展開劑 1】《臺灣中藥典第四版 2021》——正己烷:乙酸乙酯:甲醇 (6:4:1) 氨蒸氣飽和 20 分鐘。

【萃取方法 4】(自行開發 2)——HPTLC 碘化铋鉀試液和亞硝酸鈉-乙醇試液顯色後可見光檢出

1	Blank	7 , 8	檢品溶液 7 (SGA)
2	烏頭鹼(1.0 mg/mL)	9,10	檢品溶液 8 (SUA)
3	次烏頭鹼(1.0 mg/mL)	11 , 12	檢品溶液 9 (SUB)
4	新烏頭鹼(1.0 mg/mL)	13 , 14	檢品溶液 10 (SUC)
5 , 6	檢品溶液 6 (CA2)	15	Spike (檢品溶液 9)

結論與建議:以【萃取方法 4】及【展開劑 1】方式,顯示分離與檢出烏頭鹼,次烏頭鹼及新烏頭鹼效果較佳,以碘化鉍鉀試液和亞硝酸鈉-乙醇試液顯色後,於可見光下檢視較佳。